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APPROXTIMATIONS TO AND LOCAL PROPERTIES OF
DIFFUSIONS WITH DISCONTINUOUS CONTROLS

Harold J. Kushner

l. Introduction.

The stochastic differential (Ito) equation (1)

(1) dx = f(x,t,u(x,t))dt + a(x,t)dz,

where zt

stochastic control systems. Most past work has concentrated on the

is a Wiener process, is a common model of & variety of

case where ¢ and u satisfy a ILipschitz (or possibly a Holder)
condition in x, and f satisfies a similar condition in x and wu.
This has been .so, owing to the existence of a very nice theory of
(l) under such conditions. Frequently, formal applications of
dynamic programming yield that the optimal control has surfaces of
discontinuity in x, for example, when f 1is linear in wu, and the
cost does not depend on wu. Recently, in an interesting paper,
Rishel [1] applied a transformation of Girsanov [2], to construct a
process of the form (1) where wu is allowed to be merely bounded
and measurable, and proved some theorems concerning the relationship
between the formal dynamic programming equation for the cost, and
the optimal control.

Several questions remain open for the process constructed

in [1] or [2]. 8ince wu is not necessarily uniformly Lipschitz, the
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question of uniqueness remains. In Theorem 1, we show that, under
reasonable conditions, the process constructed in [1] and [2] is a
very natural solution to (1) (whether or not it is the unique solu-
tion), since it is the limit of the discrete time approximation, in
the sense that the multivariate distributions converge. TUniqueness
is then shown in Theorem 2. In Section h, we replace the possibly
discontinuous u by a sequence u, which converges to¢ u point-
wise (except on the set of discontinuity of u), and prove that the
costs of control converge to the cost for the disqontinuous controls.
Finally, in Section 5, we show that the local and growth properties
of (1) are of the same type as for Lipschitz wu. The control u is
fixed, and the optimization problem is not treated here. Some
approximation problems for the optimization problem will be treated

in & companion paper.



2, Assumptions.

For a vector f and matrix ¢ define the norms |f| =

2 lfil, lo| = X j" resp. Suppose that
i

lo,
LT
i,J
1 2 .
(A1) the vectors £ (x,t),f (x,t), and matrix o(x,t) are
Borel measurable in the pair Xx,t, satisfy a uniform ILipschitz con-
dition (i.e., |f(x,t) - £(v,t)| < K|x-y| for a real number K.) and
a growth condition of the type ]f(x,t)]2 < K(l+|x]2). The matrix

o takes the form

o) 0]

(1) o(x,t) = .
0 a(x,t)

where s(x,t) has a uniformly bounded inverse 3'l(x,t), Note that
this implies that G'l(x,t) satisfies a uniform Lipschitz condition in

X.

Let =z 0<% < T, be a Wiener process with respect to the

+2

measure P(.), and define the Ito equation

ax’ £ (x, t)dt
(2) dx = o) = o ~

ax f(x,t)at + o(x,t)dz, O0<t<T.
Assume that

(A2) The uncontrolled process x,, given by (2), has a transition
density p(x,t; y,t+s) for & > 0. There are many important examples

where this is the case. See Elliott [3], Kushner [4], Zakai [5] for some
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frequently occuring types of examples.

Since the control wu(x,t) will appear in the form
%(X,t);s %(x,t,u(x,t)), only the properties of g, as a function of
x and t, will be important. For the most part we will deal only
with the driving term ?(x,t), and delete specific reference to the

control.

(A3) Assume that the vector %(x,t) is bounded and Borel

measurable in (x,t).

(A1) - (A3) are to be used throughout. It will occasionally
be required that %(x,t) be continuous, except on a nice dis-

continuity set D,, of Lebesgue measure zero, (Of course, we can

+7
write %(X,t) in the control-dependent form %(X,t,u(x,t)), and
translate (A4) into properties of F and u.) Thus, we write, for

future use,

(Ah) Let Sm denote a sphere whose center is the origin
and with radius M,Ne(A) an e neighborhood of the set A, and p(A),

the Lebesgue measure of A, Suppose there is a set D (discontinuity

t
set), so that for each M and %, 0 st s T, w(w (D, N SM)) >0 as € —0.
For each €' > 0, let there exist an e >0 =so that |x-y| < e implies
~ ~
[£(x,t) - £(y,t)] < e (uniformly in x), provided that x ¢ N (D).

The control system to be considered has the form

dx’ £ (x,6)dt
(5) dx = 2 = 2 ~ ~ ~
dx £ (x,t)at + f(x,t)dt + o(x,t)dz,

= £(x,t)dt + o(x,t)dz,

"Note that (A2) and (Al) imply that P (X, g
' S

€ -0, vhere P_ (-} is the probability (for (2)) conditioned on x
s

€ Ne(Dyys)} 20 as

n
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~ ~e
where z,  is a Brownian motion with respect to a measure P(-).

Girsanov [2] and Rishel [1] construect the solution to (3) for a
rather general class of %, by a transformation of measures as
follows. Let ¢(x,t) be a bounded vector-valued function of the
same dimension as Zt‘

In the rest of this paper Xt or xt(w) will always denote
the random variables constructed in (2) or (6), namely the random
variables which result when the usual It0 construction for (2) or (6) is

used. However, the measures imposed on the x sequence may differ from

t
usage to usage, and will be indicated where confusion may otherwise
+
arise, The initial condition Xy =X in (2) or (3) will be con-

sidered fixed, except where otherwise stated. Define (with respect

to P(+))

T T
T 1 l 1
(#) Eo@) = écp (x,8)dz_ - 5 é o' (x ,8)0(x_,s)ds,
and the measure B(-) by BP(dw) = exp Qg@p)-P(dm). By [2], B(Q) = 1,
t
and  ([2], Theorem 1) =z, - [ o(x,,s)ds = Et is a Wiener process with
5 S

respect to B(-). Write (2) as

£ (x, , b)dt

5) dxt = 5
£ (x,,6)at + 5(x,,t)p(x,,t)at + G(Xt,t)[dz-cp(xt,t)dt]
£ (x, , 5)dt

2 N ~ ~
i (xt,t)dt + c(xt,t)m(xt,t)dt + or(xt,t)d.zt°

+Since all the measures to be imposed on the process x, will be absolutely

t
continuous with respect to P(:), the fact that x, may only be unique

w.p.l. will not be important.
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Then XtQ») solves (5) with respect to D(-) and the Wiener process

~

z (i.e., the stochastic integral in (5) is computed using P(-).)

£
By letting ¢ = 671% in (5) gives the desired equation (3). See
-[2], Theorem 1, for more details.

The following extension ([2], Theorem 1) will be useful
Let the measurable (in (w,t))o(w,t), fi(w,t), and ¢ (w,t) be

non-anticipative with respect to the =z process, 0 <t < T, (r(-)),

T T .
2
vhere ¢ (w,t) is bounded and E [ Iaom,t)[ <o Ef ]fl(w,t)ldt < w,
0 0

Let X, denote the unique random function which satisfies (relative
to P(+))

1

" (w,t)dt
(6) dx, =

2 A

f (w,t)dt + o(w,t)dzg .

t

Then Et =z, - [ o(w,s)ds is a Wiener process with respect to the
0

measure DP(dw) = exp gg(@)'P(dm) where ggop) is defined by (4) with
¢ (w,s) replacing @(xs,s) and x, satisfies (6). Then x, also

satisfies

1
7 (w, t)dt

(M t = ~ ~ ~
fEQn,t)dt + o(w,t)p(w,t)dt + o(w,t)dz;,
relative to B(°).

Since the model (2) and its extension (3) are important in
stochastic control theory, the purpose of this paper is to answer
several guestions which arise due to the non-constructive definition
of the solution of (3).

(3) has a transition density if (2) does; indeed the
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transition demsity is ([1], ean (2k))
~ . t+s
(8) p(x,t; v,t+s) = E[}xp L4 (w)’xt;;lp(x,t; v, t+s),

where p(x,t} y,t+s) is the transition density of (2).
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3, Convergence of Discrete Time Approximations.,

In this section, it will be shown that the process (3), as
defined, is quite natural model for stochastic control purposes,
being the limit (in the sense of convergence of the multivariate

distributions) of the discrete time approximations to (3).

Lemma 1 ([2], Lemma 5). Let cpn(a),t) denote a sequence of

uniformly bounded, measurable (in (w,t) functions, non-anticipative

. . T T "
with respect to the =z, process, for which CO (cpn) - go(cp) in

probability (P(-)), where o¢(w,t) is also bounded, measurable and

non-anticipative. Then,

[ lexp gg(cpn) - exp t_;f)(@)lP(dw) - 0.

T.e., the measures 'Ign(dm) = exp gg(q)n)-P(dm) converge strongly to the
measure P(dw) = exp gg(cp)eP(dw). The expectations, ﬁng(w), of all
bounded measurable functions g(w) converge to Eg(w).

We add the following corollary which will be used frequently,

Corollary. Under the assumptions of Lemma 1, for any

bounded measurable function glw), we nave ﬁng(w) - Eg(w). Let

cpn(a),t) denote a sequence of uniformly bounded, measurable functions

which are non-anticipative with respect to the =z, process (P(<)).

Let q>n(0),t) -»®(w,t) in probability (P(+)) for almost all + in [O,T].

+
E' denotes expectation with respect to B (aw) = P(dw)exp Cg(cpn).
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Then £o(p,) - gg(cp) in probability.

Proof, The first assertion follows directly from the Lemma,

For the proof of the second assertion, note that Elcpn(a),t) - cp(a),t)[u are
uniformly bounded, and converge to zero as n — « for almost all t in

[0,T]. This implies that

I 2
BLS (0, (0,5) - 9(0,8)732,12 -0
0

T
Méwy@ﬂ%@ﬁ)-w@ﬁwwﬁngam Q.E.D.

The finite difference spproximation, For some Wiener process

Et’ define the discrete parameter process, with xg = X

0?
nA+A
/ fl(xA,s)c‘Ls
A n
©O) Gy =%+
A, nAA DA LA
/ £ (x,,8)as ) + f £(x ,8)ds + [ o(x ,8)dz,
nA nA nA
and the interpolation of (9), where xﬁ = xﬁ for n <t <nA+ A,
£t ) at

(10) dx[,i =

2, A 2 A, A ~
£ tat J+ B e)at + (0, 6)dz, .

The multivariate distributions of the discrete parameter
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process (9) and of its interpolation (10), do not depend on the
specific Wiener process used, nor on the method of construction.
Hence we may construct the processes (9) and (10) in any convenient

manner., Now define the 'uncontrolled' discrete parameter process

nAFA

1, A
iA £ (x,8)ds
A A
(11) X =%t
nAMA 5 4 nAA,
f f (xn,s)ds + f o(xn,s)dzs,
nA nA

where z_ is a Wiener process (P(-)), and its interpolation (12), where

t

A_ A !

xo =% for nA<t <nA+ A
fl(xf,t)dt

(12) i =

2, A A A
f (Xt,t)dt + c(xt,t)dzs

Since the z, and xf‘ in (11) - (12) are a Wiener and an Tt6 process,

resp., with respect to the measure P(-), the process defined by
~A ~t"\--l VAR DAY
By = 2, - é o (xg,8)f(x],s)ds

is a Wiener process with respect to the measure
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Baw) = P(aw)exp (o © )

T
(@,) = / 1676, )20, 8) 1T dz

T
a1l ~ ALl I FIWAN
- éé [67 (x5, 8)2(x5,8)1" [0 (x5, 8) B (), 5) 1ds

where xf is the process constructed in (11) (with respect to P(-)).
Now, the xf process of (11) also satisfies (10) with respect to the
Wiener process %ﬁ, The multivariate distributions of the processes

(9) - (10) constructed in this way must agree with the distributions

corresponding to any other construction of the processes (9) - (10).

Theorem 1, Assume (Al) - (A4). Then the multivariate

distributions of (10) converge to those of (3).

Proof. Let the symbol E denote expectation with respect
to P(o). In view of the foregoing discussion, we need only prove

the convergence assertion (for each set of real vectors A

Lreeeah)

., o A ~
J exp(i j‘:“lxsxtj)PA(dw) = P, eens)

N iy
E eXP(lelhgxtj * e

]

m m
- E exp(i 2 Mx,_ + QTQP)) = [ exp(i ¥ Mx_ )P(dw)
- J ., 0 1 d b
=19 7j =1 < 73

Hl

F(hpyeeesh),
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where x  is the It0 process (2), and ¢ is given by (4). Recall
that E|x} - x * 5o,

t
Next, we prove that the measures 'f’A() converge strongly
to B(-).

In view of Lemma 1 and its corollary, we only need to show

that

AL, A A A K P a1l A
cpA(co,t) =g (xt,t)f(xt,t) i (xt,t)f(xt,t) = ¢(w,t).

Since U'l(x,t) satisfies a uniform Lipschitz condition in x, and

Ele Cx |t - 0, we need only show that, for almost all t in [O,t],

ol
A A P A
f(Xt,t) - f(x_t,'b)_
Equivalently, we show that for each fixed & > 0, €' > 0,
~ A ~
(13) PUE(x,t) - T(x,,t)| > e} <3,

for sufficiently small A. Tet e and €' correspond by (Ah), where

€ -0 as € -0, and let €, = €. The left side of equation (13) can be

bounded above by the sum

P{x, e Nel(Dt)} + P{]x{é - xt] >¢gl=0% +58

Let e, be small enough so that ® < /2 for e

denote the minimum of € and the e which corresponds to €' by (AL).

1A

€ . Let e
o)
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Then B, < 8/2 for sufficiently small A.
Thus (13) holds for arbitrary e' and 8, and sufficiently
small A.

By ([1], Lemma 1), we have

(1k4) E exp o:gg(cp) < exp% (052--04)5[‘02 =B,

P
where ¢ is proportional to the bound on |@(w,t}|. Let gA&b)-ﬁ'ng).

~ T 1/2 T 1/2 2
(15) ¥e,cel = B exp (@)l 6,08 <E eXP2€O(<PA)E/ le,-el” -0,
m A P
since the wA. have a common bound. Since exp i 2, xjxt —
3=1 Y%
m n A m
exp i % ktxt , letting gA = exp 1 Y h{xt 5 and. g = exp i 'Z Xéxt_,
=19 % 3=1 7 % 3=1 7 %
and using the strong convergence of %A(-) to %(-), gives
~ ~ NA NA . NA ~ ~
FA()\.l,...,)\,n) = EAgA= Eg+ E (gA-g) — lim E7g = Eg = F(xl,...,xn).

Theorem 2. Assume (Al) - (A4). Then the solution x, of (3)

is unique, in the sense that if Xi, i= 1,2, golve (3) with the Wiener

~3 . . . i
procegges Zys the multivariate distributions of the process x5, 1= 1,2

£ s

are the same.

Proof. Suppose that the Tt6 and Wiener processes X, and Et

solve (3) with respect to the measure P(-). Define the measure

Then

Q.E.D.
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+d
—
£

H

Blaw)exp ¢ (-3)

oy ~
9, = -0 (xs,s)f(xs,s)

TN
o () =

1
]
—,
S
N -
o)
[Ny
wn
]
v |
—
S
o
m
1o}
on

The stochastic integral in gg(-a) is defined with respect to the

measure D('). But, since P(-) and P(-) are absolutely continuous
T~ ad

with respect to each other, the random variable f Q‘(w,s)dzs is
0

defined unigquely w.p.l. with respect to P(-) also, Now zZ, = ;t +

J G'l(xs,s)%(xs,s)ds is a Wiener process (P(-)) and (2) is an ItG
grocess (with respect to the just constructed =z ,P(+)). Starting

with the constructed triple P(-), Z,,X,, We can re-obtain the original
?(-),;t,xt by the usual Girsanov transformation on (2). T.e., there

is some Wiener process z  (with respect to P(-)), and Tto process (2),

so that and the solution to (3) can be constructed by the Girsanov

Z¢
transformation on z_ and the x_  given by (2). S8ince the multivariate
distributions of the discrete approximations (10) do not depend on the
Wiener process, and converge to those for (5) for any solution to (3)

which is obtainable by a Girsanov transformation, it ig clear that the

multivariate distributions of (3) are unique. Q.E.D.
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4, Approximations of discontinuous controls, and the corresponding costs,

Define the processes (16) and (17) constructed by the Girsanov

transformation on (2) with measures
T T
P(“)e@ §O<an)’ P(dm)eXP go (CP)}

-1 A
resp., where o (x.,t) = (xy, ), (%, 1)

fl(xt,t)dt

(16) dx, = . . )
£ (e, 0)at )+ B (x,,t)dt + o(x,,t)dz,
fl(xt,t)dt

(17) dx, =

2 N A ~
£7(x,,t)at J + T(x,,t)dt + o(x,,t)dz,.

Let E° and ¥ denote the expectation corresponding to (16) and

~ . . . ~

fn(x,t) 1s to be an approximation to f(x,t) (or,
A

equivalently, un(x,t) is an approximation to u(x,t), and fh(x,t) =

~
f(x,t,uh(x,t))). The next two theorems consider the convergence of
~ A
costs as u, >u or ﬁn-» f. The results are of interest, since we
may desire to approximate the discontinuous control wu(x,t) by a smooth

control 'un(x,t) which is smooth in X and where un(x,t) R ou(x,t)

except in a neighborhood of the discontinuity set Dt'
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Theorem 3. Assume (Al) - (A3). ILet k(x,t) and Db(x) be

bounded and Borel measurable. ILet f (x,t) - F(x,t) for each x ¢ D,

where %n and. ’f\ are uniformly bounded, and Borel measurable. Then

T T
(18) B (f) k(xs,s)ds + ﬁnb(xT) - E {) k(XS,S)ds + rﬁb(xT)

Let un(x,t) and u(x,t) be Borel measyrable, ILet k(x,s,u)

be bounded, Borel measurable, and let k(x,s,un(x,s)) - k(x,s,u(x,s)), as

n —» o, except for x € D

2 go £or ©>0. Then (18) holds true if k(x,s,u)

replaces k(x,s).

Proof, ILet g(x) be bounded and Borel measurable. To prove

the first assertion, we only need to show that
(19) Eng(xt) —e'f:g(xt), t > 0,

T P T ~n
It go(cpn) = go(q)), then, by Lemma 1, the measures P (.) converge
strongly to P(+), and (19) holds,
But, as in the proof of Theorem 1, gg(’cpn) £ gg(cp) if

~ P A
fn(xt’t) = f(xt,t), t >0,

which holds since ?n(x,t) ->'f‘(x,t) except for x e D, where
P(XJG € Dt} = 0,

Continuing to the second aséertion, we use the argument
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which led from (15) to the end of the proof of Theorem l. We must
show that

e, b, (%, 1)) - B (x,,b,0(x,,%)).

Since, by the first part of the theorem,

ﬁnk(xt,t,u(xt,t)) —aEk(xt,t,u(xt,t)),

we need only show that

(20) ’ﬁn|k(xt,t,un(xt,t)) - k(x,,t,u(x,, )] -»o0.

But, hypothesis, the integrand in the left side of (20) converges to zero

P(-)). Then an argument identical to (15) gives the conclusion (20). Q.E.D.
The next theorem concerns the cost approximation for a process

which is stopped, not at fixed time T, but at the random time

T = inf (tI x, ¢ R), where R is a fixed bounded open set. Note that

min [T{®»),T] depends on the path xt(m), where x_ 1is given by (2). The

value of the random variable min [7(w),T] is the same for the transformed

process (3) (with %n or F used) as for (2), since the process paths x

t

are the same. Only the measures are changed. Note that, since the F are

uniformly bounded, there is a constant K < e for which

f\.'n o~y

ET<K<w® BEt<K.

This is implied by the fact that o(x)o'(x) > oI, where I is the identity

matrix, for some o > O.
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Theorem 4. Assume the conditions of the second paragraph

of Theorem 3. Then

B ka(xS,s,un(XS,s))ds + E'o(x) -
0
(21) T
E S k(xs,s,u(xs,s))ds + Eb(x,r)
0

as n — o,

Proof, Fix T < «, First we show that (21) holds for

TN T=min (T,7) replacing 7. Since the measures (for the
processes on [0,T] for each T < o) B'(+) converge to B(-)

strongly, the expectations of any bounded and measurable function of

® converge, as n ~>w, Let IT(S)=l if 7>s and O if T < s, Thus

b (XTnT) = ' (XT ()T (@)) - Eb (XTDT)

(22)
Bx(x, 5,u(x,,5))T,(s) = Be(x,,s,u(x_,8))T_(e),

for s <T and, as in the proof of Theorems 1 or 3
~n
(23) E |k(xg,8,u(x,,8)) - k(xs,s,un(xs,s))]IT(s) -0,

Thus (see proof of Theorem 3)(21) holds with T N 7 replacing =.

. rvn ~
Next, since E 7 <K < o, BT <K < », we have
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T
S [k(xs,s,un(xs,s))]ds -0
(2h) T

p(x,) - bl pp)| 20

as T - «, uniformly in n, Equation (21) follows from (22) - (2%). Q.E.D.
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5. Local properties of (3).

In this Section we give some of the local properties of (3),
as defined by the Girsanov transformation. Inde d, (3) has virtually

all the properties which it would have if f‘ were Lipschitz in x.

Theorem 5. Assume (Al) - (AL). Let xxé and x_ denote
the processes given by (3), with initial conditions xg = x" and

Xy = X. (We use E' and ¥ for the corresponding expectation

operators.) Then the multivariate distributions of xfcl converge

to those of Xt as xn - X,

Proof, In the proof, xfcl and X, denote the random

variasbles defined by (2), corresponding to the initial conditions X"

and 'x, resp. We must show that, for any set of real vectors A\ A

l’-oo’ m,

m
~ n
EnexpiZXXt

m
T . n
] 3 = B exp [go(cpn) + 1.21)”;]}{1: 1 -
J= J J= j

J

(23) T il ~ m

E exp [£,(0) + 1 Lax ]=Fexpil ME
3=17 % g=1° 73

where Cg(cpn) is (4) with x: replacing x . WNow

m n P m
1 1 ] 1]
exp 1 ;. A’jxt. - exp 1 .Z )\,J.Xt o

J=L < 7 =L ° ]

As in the proof of Theorem 3, we only need to show that
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n P o ~o
ggﬁp ) —aggop), for this implies that Pn(o) - P(+) strongly (see
proof of Theorem 3). But, Cg(q)n) 5 Qg(cp) if %(x:,t) £ %(xt,t),

as Xn' - X, Now, (E, €' are defined by (A’*) and €1 = e)

P{[’f(xfcl,t) - ’f(xt,t)[ >e'} < PHXI;—XtI > g} +

P{XJG € Neth)} = 61 + 62,

Choose e' >0 and 8> 0. Choose ¢, so0 that B, < 8/2, for e < g-

{(This is possible since Xy has a density.) Let € denote the minimum
of €, and the e corresponding to €' by (Ak). Then for large enough
n, 8 < 8/2 which proves the assertion. Q.E.D.

Theorem 6, K and K, denote real numbers, Fix T, and: let

X, = x. Assume (A1) - (Ak). Then, for 0 < t < T,

0
(26) E|xt!2 < Kl([x[2+l‘},,

~ 2 Loy 12
27 i) X X 1
(27) EO;E_TI o < Ky (1x[7+1)
(28) Elx, x| < Kat(lx]2+l).

ror x £3,,
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t 1
[ £ (x,s)ds
0

o) |Bx, -x- { . . < o() (1+]x|%)/2

[ fP(x,e)as |- f B(x,s)as
0 0

where o(t)/t -0 as t -0 uniformly in x, for 0<%t <T.

t 5 o
(30)  |E(x,-x)(x,-x)' - [ 0(x,5)0" (x,5)ds] <K, (|x|%1)t".
0

Let 5Zr denote the minimum ¢-algebra which measures

s<r, Then 6 w.p.l.

2 3

T+r 1

[/ f (xr,s)ds

T

(31) E(x RB) - x_ -
t+r' t * t+r 5 ttr,
£ f (xr,s)ds - i f(xr,s)ds
i 2.1/2

< o(x) (1+|x 2

where o(t) satisfies the property above (30). Also, w.p.1l.,

AR

T+
1B (x,,-x,) (hpypk,) ' | B - [ olxy,8)e0 (x, 8088
r

2
52) < K5(|xr| 2+l)t2,
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Proof, Proof of (26). Note that all moments of (3) are

finite since all moments of (2) are finite and

ﬁglxt[m < E]xtlng exp 2@50@) < w,

t t
Using the estimates & |[ o(xs,s)dzs|2 <E[ lc(xs,s)lzds and
0 -0

t t
(f ]f[ds)2 <t [ fzds, the boundedness of |%| and the growth condition
0 -0

(A1) in ¢ and = on equation (3) yields

~ 2 2 o2 2
(33) Elx.|” <®glx|" + K, é (L+E|x | 7)as + K (t+t7), 0 <t <™.

(33), together with the finiteness of E]the implies (26). The proof
of (27) is rather standard and is similar to that of (26), the main

difference being the use of the martingale estimate

Emax |/ U(XS,S)dZSI <2 J EIU(XS;S)I ds,
o<t<T O 0

and the details are omitted.
The proof of (28) is essentially the same as that for the
case where T is Lipschitz in x, and is omitted.

Proof of (29). We have
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(34a) E étlfi(xs’s) - ti(x,s)|as <K étﬁfxs_xlds <K - t5/2(1+|x|2)1/2.
Also
I, = ElE(xy,0) - $0m0)] = [ _ngelf(xs,s) - 2(x,) | B(aw)
+ Ifx _Xl<€|%<xs,s> - B(x,5) | B(aw)

Ils + I2s°

Note that, by the first part of (&4), x # Ne(DO) for sufficiently

small €, say e< e (since x f DO). Also, using the boundedness

0
of ¥ and Chebyshev's inequality, and (28),

S1/.2,(“,!){12,)1/2

I,. < K8P{]xs-x| > €} < K9

1ls
IEs S €,
where (see (A4)) we define €' = e'(e) = sup I%(x,s) - ?(y,s)] and
X-yl<e
x)éNe(Ds)

€ -0 as € -0, uniformly in x, for x ¢ N€ (D), for any

fixed EO > 0,

Iet €= sl/u. Then

< K Ot5/u(l+]x]2)l/2 + o(t),

S

(34p) [I
0

where o(t)/t -0 as t >0 uniformly in x, for x ¢ N_ (), for any
0

€y > 0. (3ka) and (3L4b) imply (29), for sufficiently small t.
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The proofs of (30) and (32) are the same for the case where
$ is Lipschitz - if Igl is replaced by its supremum in all estimates.
(The drift terms do not effect the result as long as the discontinuous

term is bounded.)

Proof of (31). More generally than (28), it can be shown that,

w.p.1l.

~ 2 2
E{,xt+r - Xr] 2, < Ky’ t(]xr] +1), 0<t<T,

It follows from this and Schwarz'!'s inequality that

t+r

. . ~ t+r .
55) BU Ity 00t o) as| @) < OB £, 0)-£ (x5 |Pas | @2
r r -

<k, /2

- 12 (l+|xr]2)l/2.

Also, for s >r

I, = E{I?(xs,s) - %(xr,s)] 52} l?(x s) - f(x s)]p(xr,r, x ,s)dxs

where the integral is evalusted at X, = xr(w), and Dp(x,r; y,s) is

the transition density. We may bound IS by

L ”~ ~
|x -i |<e lf(XS’S) B f(xr,s)]p(xr,r, * ’S)dxs
s™7r! s
xr;éN€ (@)
s
~ & ~
+ f ]f(xs,s) - f(xr,s)lp(xr,r; X ,8)dx

lxs_xrlzes

oY s
+ f(x ,s) - f P .
X eNf (D) l2( s? ) (xr,s)lp(xr5r9 Xgs
re Vr
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where

s S %3¢

1/2
. Kl5sl/2(1+|xr| 2)

<
28 = €
s

Isg < K]je"(es) = KlBP{]Xr] € NeS(Dr)) 20, as e, >0,

where (see (A4)) [x-y| < e and x ¢ N_ (D) imply that
5

|$(x,t) - Ty,8)] < €, where e, =0 as e —0. Letting e_ 1/k

2]1/2

il

S

gives I, + I, + = e'”(s)[l+]xr] where e'''(s) =0

I53

as s —» 0, wmiformly in X Now

2

t
[ eri(s)ds = oft)
0

uniformly in x ., vhich establishes (31). Q.E.D.
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Abstract

Stochastic differential equations whose drift terms do
not satisfy the usual (Itd) Lipschitz or linear growth conditions
in the state occur frequently as models in stochasgtic control
theory. ILocal stability properties are useful for proving global
exlstence for ordinary differential equations whose right hand sides
grow too fast or are not Lipschitz in the state. Here, we use a
local stochastic stability property to prove global existence,
stability, ergodicity, the strong Markov and other properties, for

a class of diffusions which occur frequently as models.



1. Introduction

For a vector x = {xi} and matrix o = {cij}, define the

Euclidean norms ]X]2 =7 xi,

2
'c] = c?., resp. Consider the homo-
i i,3

dJ

geneous+ TtO stochastic differential equation

(1) dx = f(x)dat + o(x)dz, t>0

where o(-) satisfies growth and Lipschitz conditions of the tvpes'
(22) lo(x)|® < x(2+]x]%)

(2v) lo(x) - o(y)| < K(1+[x]),

and z(t) is a normalized vector valued Wiener process. If

(38) £260)|% < k(2+]x]%)

(3b) [£(x) - £(v)] < K[x-v]

then the Ito existence theory is applicable to (1) and the stability

properties can be discussed [1]. If (3b) holds locally, but (3a) is

violated, a 'local' stability property([l], Theorem 8, Chapter 2 )

ensures the existence of a solution to (1) for all t > O.

+ . s . . .
The homogeneity condition is not essential, except in Section b,

+
* K and Ki always denote real numbers; their value may change from

usuage to usuage.
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Recent investigations [2-5] have studies an important class
of equations (1), where f(:) 1is allowed some discontinuities. Re-

write (1) in the form (xl and x° are vectors).

ax £ (x)at
4 ax= -

ax # (x)at + F(x)at + 6(x)dz
where we assume that the ' and G satisfy (3) and'(E), respectively,
and G(x) has a uniformly bounded inverse. (Thus G'l(x) satisfies
(2).), but %(-) does not necessarily satisfy (3). In the sequel,
we prove existence, uniqueness, and other properties of (&), when
neither (3a) nor (3b) necessarily holds, but a 'local' stability
property obtains, and also treat the problems of asymptotic stability,
the existence of a unique invariant measure snd the convergence of

the measures of (1) to the invariant measure.

Diffusions of the type (H) occur frequently in control
applications. Congider, for example, a 'white noise' driven n'th
order differential equation where ’% is a t'bang-bang' control
taking the values {+1,-1}, or which may be discontinuous on a
smooth !switching curve', and tend to infinity in certain

directions. Also models such as

g

1 ngt

&

= -(xl+x§)dt + odz

are sometimes used, and the existence,and asymptotic character of

the corresponding measures are of interest.
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2. Mathematical Preliminaries

Assume
i ~ : ' :
(c1) £~ eand o satisfy (3) and (2), respectively, and
3'l(x) is uniformly bounded. £(+) is a vector valued Borel func-
tion of x which is bounded in any compact set.
(C2) The process (5) has a transition density »p(x; t,y).
N
(C3) (Acondition on the discontinuities of f.) Let S
denote a shpere of radius m, whose center is the origin. ILet Ng(A) denote

an e-neighborhood of the set A and u(A) the Lebesgue measure of

A. Suppose there is a (discontinuity) set D so that

u(Ne(D n sm)) -0

as € -0 for each m < ». For each €' > 0, let there be an e >0
so that |[x-y| < e dmplies |F(x,t) - F(y,t)] < ¢’ uniformly in x

in bounded regions, provided that x £ Ne(D)'

Assume (Cl). Let @ denote the sample space. We use the
notation (Q,z(t),f@%,P) for the Wiener process on [0,«), where P,

measures z(s), s <t and z(rg) - z(rl) is independent of éat for

t < r, <r,, and P is the measure on all the 5@%. We say that z(t)

is a Wiener process on (Q,j%%,?). Let x(t) be the unique solution

to the ItS equation (5)
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fl(x)dt

&

() dx =
fe(x)dt + 6(x)dz

&

We say that x(t) is an It0 process with respect to (Q,z(t),f@%,Px),
where P denotes the probability given that x(0) = x (and E
denotes the corresponding expectation). E and P denote expectation
and probability for functionals of z(t). Define Q, as the sample

T
space for z(t), t < T. Suppose that

T
(6) g (6 () Px(4))1%at < »  wop.L.

(which is certainly true if % is bounded). Define

T, T'\-l A 1 T A=l ~
Co(F) = [ & (x(e)20x(8))an(v) - 5 [ 187 (x(8))3x(x)) | 2at

and suppose that

(7) E, exp gg(?)

Il
.

((7) holds for all T < o if T is bounded.) Then the probability
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~ +
measure PT defined by
~ T
BL(a) = J exp ¢2(£) P(dw)
X
: A
is a measure on the &, , t < T, The process ;(t), t<T

~ tl\l A
z(t) = 2(t) - [ o " (x(s))f(x(s))ds

is a Wiener process on (QT,ﬁgt,¥§), and the process

£l (x)at
(8) dx =
P (x)at + T(x)dt + o(x)[dz - 6 -(x)F(x)dt ]

£t (x)at

£ (x)at + T(x)dt + o(x)d¥

is an TtO process with respect to (QT’%<t)’£@%’¥§)' The construction
was first done by Girsanov [4], and exploited by Benes [5], Risghel [2]
and then Kushner [3], for several control problems. Note the sample
space QT’ the o-algebras j@% and the random variables x(t) for
the Wiener process %(t), and ItC process (QT;E(t),ﬁﬁk;Ez) are the
same as those for the Wiener process z(t) and ItO process (5), for

t < T. Only the measures have been changed. The process (8) is

constructed by a transformation of measures on the 'nicer' process (5).

—
The measure ?E depends on the initial condition of (5), as does the

Wiener process z(t).
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The following facts (drawn from [2-4]) about (8) will be

needed. Assume that © is bounded and that (C1l-3) hold.

(01) ([3], Theorem 5). The multivariate distributions

of (8) are continuous with respect to the initial condition x(0),

(in the sense that the characteristic functions are continuous in x(0)).
(02) ([ 3], Theorem 2). The solution to (8) is unique

in the sense that any two solutions to (8) have the same multivariate

distrivutions.

(03) EE sup |x(s) - x[2 < Klt(l+|x|2), t
>8>0 -

IA
=

£ sup |x(s) - x:]LL <K t2(l+lx]u), t < T
X o L
250
AT . .
where E_ is the expectation given x(0) = x, and K, depends on the
bound on . The proof of (03) is close to that of (27) - (28) of

A

[3] Theorem 6. Ky depends on the bound on f.

(o4) If the process (5) has a density p(x; t,y), then
so does (8) and the density of (8) is any version of ([2], Lemma 1),

(boundedness of T is not required if (6) - (7) hold) for t < T

~T ~
a(x; t,y) = B [exp £0(B)]x(t) = yIn(x; t,¥).

Also (f is not required to be bounded in (05)).

(05) ([4], Corollary to Lemma 3). Let g(w) be 5@%

~T
measurable with Exlgﬁm)] < e, and t <P. Then, for =<t <T, w.p.l.
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¥ [e()] @] -2 le@ex t (D] 2,].

(The equation algo holds if _gz is replaced by any sub o-algebra
of .)
Fix T, and define ;(t) and Eﬁ by the Girsanov transformation.

Write Z(t) as ET(t). Suppose that (6) - (7) hold for a time T, > T,

T T
and define the corresponding & (t), l. Then l(t) z (t)
l

for t < T, and on sets B of sz we have P (B) P (B) This

follows from (05) since (X is the characteristic function of the set B)

~Tl Tl n
P, (B) = E[E(exp ¢ "(T)| ;)]

1]

T, Tl A
E Xgexp £ (F)[E, (exp £r(£)] B)]

E XpeXD gE(?) = %g(B).

T
Thus E&l is an extension of Pz. If (6) - (7) hold for each

~

, We can replace QT by O and define a unique measure PX on
~T

all the SE%, t < o, which will be consistent with the Px on 58T,

T < o

Then Z(t) will be an It® process with respect to (Q,f@%,%x),
(2,2(t), B,,B ) an I3 process (for all +t < w). Both (6) - (7)

hold for all T < w if © is bounded. ILet & = U Q%f
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"N
3. FExistence of a Solution to (8) for Unbounded f

Let V(x) denote a non-negative twice continuously dif-
ferentiasble function which tends to infinity as [x]| - ». Define
N N
Qp = {x: V(x) < N} and let fN(x) = f(x) for x e Qq and %N(X) = 0,
x £ Qe Define C§ = {w: x(t) € Qp t e [0,T]}. Let ¢ denote the
differential generator of the process (8) and write 2“ for the

differential generator when T is replaced by T in (8). Theorem 1

uses a stability idea to prove existence for (8), for all t < e,

Theorem 1. Assume (Cl) and the above conditions on V(x).

Let ZV(x) <0 for x not in some Q_, a < ». Then

(9) Byexp (L(F) = 1

for all T < o, and

~ tA 1 2
z(t) = z(t) - [ o (x(s))f(x(s))ds

is a Wiener process, for all ¢ < o with respect to (0,33%,5 ).
X

The solution to (8) exists for all t < . Tt is an Ttd process with

respect to CQ,z(t),gEtsﬁx) and, under the additional assumptions

(c2-3), it is unique (in the sense that the multivariate distributionsg

of any two solutions are equal) for all t < o,




Remark. Let f(y),o(y) satisfy (3), (2) locally, and let

L denote the differential generator, with coefficients determined by

1
£(y),0(y). If V(x) and £ V(x) have the properties required in
Theorem 1, then the proof can be altered to yield existence and
uniqueness for the process dy = f(y)dt + o(y)dz.

Proof. Let T replace f, in (8), where N > a. Let

2

%g’T denote the transformed measure with ﬁg’T(A)A= [ exp gg(%N)dP

A
and Pg the extension of Pﬂ’T to the g-algebra #H on Q. Write
the Wiener process corresponding to ﬁg as EN(t) (instead of 7Z(t)).

Then (8) is sn It0 process with respect to (Q,EN(t),gz%,ﬁg). By

virtue of (03) (for x = x(0))

(10) Eg[ sup |x(s) - x| > e >0} -0
>8>0 -

as t - 0, uniformly for x 1in compact intervals. Also

vx) <o int -Q - X = Let 71 denote the first exist'' time
- QN a a~ Q‘1\T,a'

of the path x(t) from Qg - Q, - R ,end t N 7 =min (t,7).

Then, by ItS's Lemma ENV(x(t N 7))- V(x) <O for x e Q - Q.

Since

+
BQN is the boundary of the set Q-

++ . .
If 7 is undefined for some path, set 7T = +wo. Note that the exit

time v(w) (as a path function)for x(t) and %N(t) are the same,

but their distributions may differ.



Egv(x(t ntT)-acx (N-a)ﬁg{x(s) hits BQN before aQa and

leaves QN a in [O0,t]},
7

we can conclude that

(11) Bl(x'(t) hits 3 before X, and leaves 4y, o 10 [0,T1) 51’.%.; = e

We will show that for each ¢ > 0, there is an N < ®o s0

that
(12) Bleg) > 1 - e

Fix a; >a. Iet x e aQa. There is a 50 > 0 so that

min |x-y] > I
Xed,ye aQal

et A e C§. Then, since %N(x(t)) = %M(x(t)) on [O0,T]

for M 2 N and o e Cﬁ, we have
(13) Bl) = g e (r @)%, = B e S(Fx, = B (0).

(03) implies that
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sup B mex |x(t) - x| >3} <K,

X
xe &’a alzt?_o

o] o
OFl(—‘[\)
i
L]

o

But (13) implies that the constant X, depends only on the number aq

2
and does not depend on N, for N > a'l. Thus, we can assume that K2
does not depend on N.

Let Glﬂ\; denote the event that =x(t) goes to &'a before

BQ,N (or never leaves Q’N, a)’ then takes more time than T/n = 8, to

reach B;),a , then returns to B‘Q"a no fewer than n - 1 additional
1
times and after each return takes no less than 81 to reach &’a s
1

before leaving Q’N for the first time. Then ?ﬂ{cﬁ} > ﬂﬁl}\l{(}lﬁ} and

>~ T
PNX{GN} >1- n(e +e,) - €5, Where

(a,-8)
~ 1
€ = erelax PNX{x(t) reaches Oy before R, } S
ol
Thus, using 81 = T/n,
2
TGl >1-n e, _V(x)-a
X N - N-a 2. N-a
n 80

and N and n can be chosen so that NPNX{GI?T} >1 - e.

. . ~T . . .
There is a unique meagure PX on QT which is consistent

with the 51’\2 on the sets C%;. Furthermore, (the left hand inequality

is [4], Lemma 2)
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1> 'lgz(fzr) = E_exp gg('f') > E exp CE('JE\N)XCT >1- e
N

Since e is arbitrary, (9) holds, E(t), t < T, is a Brownian motion
with respect to (QT,jﬁk,ﬁi) and x(t), t< T, an Tt0 process with
respect to (QT,E(t),fﬁk,ﬁg). Furtheremore, since T is arbitrary,
we can replace t < T by t <o and ?g and QT by ﬁx and Q.

The process (8) is unique in the following sense. Suppose
that both xi(t), i=1,2 satisfy (8). Let Xi’N(t) denote the
processes which result when %N replaces %. Suppose that if
Xi’N(t) € Qp for all t e [0,T], then xi(t) coincides with xi’N(t)
on [O,T]. Then the uniqueness of the Xi’N(t) (in the sense of
multivariate distributions) and the fact that ?ﬂ{cﬁ} = ?g{cﬁ} >1-e€
for M >N (the ﬁg do not depend on 1) imply uniqueness of the

xl(t) in the sense of multivariate distributions. Q.E.D.

Remark. TLemma 7 of [h] would appear to yield existence for
A
a large class of unbounded f£. But an examination of the proof shows
that its content is the following. Let processes (5) and (8) exist

with respect to some Wiener process, with (5) being unique, and

T
/ IG'l(X(t))%(x(t))]Edt < o w.p.l, where x(t) is the solution to

o
(5). Under some minor subsidiary condition, it is proved that

TA
E_exXp Co(f) =1



where the expectation corresponds to (5). Then (8) can be obtained
by a Girsanov transformation from (5). But both the square
integrability property and existence for (8) must be established

first. But these properties are essentially the desired result.

3. Markov Properties of (8)

Write (C4). In each compact x set, there is an o >1

and M < o so that

J o¥Mx; £,7) <M< w,

Theorem 2. Assume (Cl) - (C3) and the condition on V and

£V of Theorem 1. Then the process (8) is a strong Markov process.

If (CL) holds, for some o > 1, (8) is a strong Feller process.

Proof. T he terminology of Theorem 1 will be used. By

Theorem 1, the process is defined on the time interval [0,), and
has continuous paths w.p.l.
First, we prove that (8) is a Markov process. ILet _9?? C 4
t
measure x(s), s <t. Define the transition function B (x; t,A) =
X

PX{X(t) € A}. Since the right hand term of

B (x(t) en) = BX e () ety &P HE)
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is a Borel measurable function of x, so 1g ﬁ(x; t,A) for each

be N N
A e E?t. Now assume that fN replaces f. The Chapman-Kolmogorov

equation holds since, by (05) and the fact that (5) is a Markov

pI'OCGSS,
'ﬁﬂtx{xmw}lz’;] = B[ Xy (e en] &P ¢S (E) | B
= B (o)X (a6 ety @ LoFD1 = Bl(x(s);58,0)

w.p.l. Thus by the definition Dynkin [6, Chapter 3], XN(t) (the It0 proc-
ess on ({%EN(t),_Q%,ﬁg) corresponding to the use of ?N) is a

Markov process.

~

The o-algebras . also measure (8). The measure p, for

t

the unbounded ?, has the correct conditioning properties since, by

(05) and the dominated convergence theoren,

~ X
EX[X{X(t+S)€A}X{CN }F%%]
tts
t+s A X
= Ex[x{x(t+s)eA}X(C§+S}exp Cs (f)'éas]

t+s8 4 b:d
_;Ex[X{X(t+S)€A}eXP gS S(f)léas] =

T D .
= Ex(s)[x{x(t)eA}eXp Co(f)] = P(x(s);t,A)

w.p.l. Then, by the definition [6, Chapter 3], (8) is a Markov process.



(8) is a Feller' process, hence a strong Markov process [0,
Theorem 3.10]. The proof is omitted. The proof of the stronger
'strong' Feller++ property will be given next, under the additional
condition (Ck). Let (ck) hold.

Supposing that (8) is a strong Feller process if ? is
bounded, we show that it is a strong Feller process for unbounded ?.
Let g(<) be bounded and measurable. Then Egg(x(t)) = GN(X) is

continuous in x, for t > 0. Write G(x) = Exg(x(t)). Then

N s T ~
[G(x) - 6" (x)] = mix lg(x)] - [BX{Q_CN} + Pg{ﬂ-cﬁ}] -0 as N - o,
uniformly in any compact x set. Thus, G(X), being the uniform
limit of continuous functions, is continuous.

~

Finally, suppose f is bounded and (C4) holds. Reproducing

an argument of Rishel [2], we show for each compact x set, there is

a B>1 and M<w so that (g is the density of (8) - see (Ok))

(1) [ e ey ar <y <

TA process x(t) 1is a Feller process if E_f(x(t)) is a continuous
function of x, if f(x) is continuous and bounded.

"Tx(t) is a strong Feller process if E f(x(t)) is continuous in x.

for any bounded Borel function f(x) and t > O.



Define r(x; t,y) = ﬁxfexp gz(%)[x(t) = y]. Let oy oat - 1,
and note that, for any o > 1 and compact x set, there is an

~ +t A :
N, < so that E exp p go(f) <N, ([4], Lemma 1). Let B > By, B> 1.

By Holder's inequality

B B-B;
/ pB(X; t,y)rB(X; t,y) =/ p l(x; t,y)rﬁ(xg t,¥)p (x; t,y)dy

B.n B-B, )m
<[fp . (%; t,:v)rﬁn(x; t,y)dﬂl/n[f p T (x; t,y)dy]l/m-

We can choose p>1,8>p,, m n and p>1 so that (ﬁ-ﬁl)m = qQ,

Bn = p, pyn = 1, which , together with (Ck), proves (14). Equation (1)
implies that, as x varies in any compact set, the family q(x; t,y) of
functions of y is uniformly integrable. This, together with the con-
tinuity (in x) of %(X; t,(-»,2)) for any vector a (recall that there

is a density) implies that ﬁ(x; t,A) 1is continuous in x for any Borel

gset A, which implies, in turn, the strong Feller property. For more
detail, note that the boundary of any rectangle in the range space of
x(t) has zero probability, and that P(x; t,A) is continuous in x

if A 1is the sum of rectangles (open or closed). Let %(x; t,Aj) be

n

continuous in x for s collection of gets Aj’ which increase monotonically

to A

B(x; t,4) = [ a(x; t,y)dy + [ q(x; t,y)dy.
Aj A=A

The second integral goes to zero as j — « uniformly in x in any
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compact set, by the uniform integrability of q(x; t,y). Since the

first integral is continuous, so is the uniform limit %(x; t,A). Q.E.D.

4. The Invariant Measure, and the Asymptotic

Properties of the Measures of (8)

In [8], under the conditions (D1) - (D5), Khasminskii
proved the existence of a unique o-finite invariant measure for a
process x(t) with a stationary transition function P(x; t,A)

under the conditions (D1-5).

(D1) For any ¢ neighborhood Neﬁx) of x, 1 - P{x; t,Ne(x)) =
o(t) wuniformly in x in any compact set.
(D2) The process is a strong Markov and strong Feller

process.

(p3) %(x; t,U) > 0 for all open sets U and t > 0.

(D4) The paths are continuous w.p.l.

(D5) The process is recurrent. (There is some compact
set K and a random time T < » w.p.l. so that x(1) ¢ K w.p.l.,
for each initial condition.)

In [9], Kushner applied the result in [8] to obtain a
sufficient condition for the convergence of the measures of class of
diffusions to a unique invariant measure. Theorem 3 includes the
prior result as a special case. Zakai [10] has treated the invariant

measure problem for a class of diffusions satisfying (2) - (3), using
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a general method ofBenes [11l]. A similar problem is treated in Elliot [12].
Elliot's method involves a condition on a Lie algebra generated by

certain functions of the diffusion coefficients, which is hard to

check in special cases. The result of Benes [11] (concerning only
existence of an invariant measure) uses the condition that

lim P(x; t,K) >0 for all compact sets K. This would not always
]x‘-—)oo

hold under our conditions. E.g., the solution to X + x5 = 0, reaches

X =1 1in a time that is bounded as x(0) —+ «, and we would expect a

pect a similar result for dx = _x5dt + odz.

Theorem 3. Assume (Cl) - (C4), and the conditions on V(-)

in Theorem 1, except let #ZV(x) < -e <O outside of Q_. Let (5)

have a nowhere-zero density, for each initial condition x. Then (8)

t - e

has & unique inveriant measure Q(.) and §(x5 t,A) »Q(A) as

for any x. Both P(x; t,A) and Q{A) have nowhere zero densities.

Remark., Theorem 3 only deals with invariant measures, but
almost all of stability results in [1] can be carried over to the

problem with discontinuous drift terms.

Proof. The second inequality of (03) implies (D1) for

N .
bounded %, and, hence, for the processes X (t). But, if (D1) holds
for each XN(t), it holds for (8). (D2) is proved in Theorem 2,

Since Ex[exp gg(%)lx(t) =y] >0 w.p.l. and p(x, t,y) >0 for
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y by assumption, q(x; t,y) (the density for P(x; t,A)) is positive
for almost all y (Lebesgue measure). This implies (D3). (DL4) is
a consequence of Theorem 1. (D5) is a consequence of #V(x) < -e < O

for all large x. (See Theorem L4 in [9]). Indeed, the average time

to leave the set QN - Qa - aQa (for x(0) = x) is bounded above by

(V(x) - a)/e < ». This together with (11) gives (D5). Thus all
(D1-5) hold.

Q(A) satisfies

[ Q(ax)P(x; t,A)

Jau [ Q(ax)a(x; t,u).
A

Q(A)

Thus Q(A) > O for all sets A of positive Lebesgue measure and has
density [ Q(dx)q(x; t,u), which must be positive almost everywhere.

For a process with a transition density and a unique in.
variant measure Q(-) with a nowhere zero density, Doob [7,

Theorem 5] proves that P(x; t,A) »Q(A) as t —»w for any x. Q.E.D.
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